

ZNC-7600/7600R LCD Flow (Heat) Totalizer / Recorder Operation Instruction

I. Introduction

ZNC-7600 LCD flow totalizer is mainly designed for trading discipline between supplier and customer in regional central heating, and calculating steam, and high precision flow measurement. It's a full-functional secondary instrument based on 32-bit ARM micro-processor, high-speed AD and large-capacity storage. The instrument has fully adopted surface-mount technology. It has good EMC ability and high reliability because of heavy protection and isolation in design. It is embedded RTOS, USB Host, and high-density FLASH memory, which can record 720-day length sampling data. It can automatically identify saturated steam and superheated steam. It can also be used for process monitoring and volume control of steam heat. History data recorded in instrument can be copied to USB disk at any time and analyzed by DTM software on PC. The instrument may be used together with vary flow sensors such as Orifice Plate, V-cone, vortex, and so on. Besides, it also features good performance in anti-theft and power failure protection.

II. Technical Parameters

Measurement input					
Input signal	Curren	nt: 0-20mA, 0-10mA, 4-20mA, √0-10mA, √4-20mA			
	Input in	mpedance: ≤100Ω			
	Maxim	um limit of input current: ≤ 30mA			
	Voltage	e: 0-5V, 1-5V, 0-10V (customized), √0-5V, √1-5V, 0-20mV, 0-100mV			
	Input in	mpedance: ≥ 500KΩ			
	Therm	al resistance: Pt100, Cu50, Cu53, Cu100, BA1, BA2			
	Linear	resistance: 0-400Ω			
	Therm	ocouple: B, S, K, E, T, J, R, N, F2, Wre3-25, Wre5-26			
	Freque	ency signal: range: 0-10KHz; wave shape: rectangular, sine wave, square wave			
Output					
Output signal	Analog	g output: 4-20mA (load resistance ≤ 480Ω), 0-20mA (load resistance ≤ 480Ω)			
	0-10m	A (load resistance ≤ 960Ω), 1-5V (load resistance ≥ 250KΩ)			
	0-5V (I	load resistance ≥ 250KΩ), 0-10V (load resistance ≥ 4KΩ) (customized)			
Alarm		output: relay control output: AC220V/2A, DC24V/2A (resistive load)			
	Feed o	output: DC24V±1, load current ≤ 50mA			
	Comm	unication output: RS485/RS232, 1200-9600bps, Protocol: MODBUS RTU.			
	Comm	unication distance: 1Km for RS-485 and 15m for RS-232.			
Comprehensiv	e param	eters			
Measurement		0.2%FS±1d			
precision					
Setting mode		Light touch control panel for setting parameter, which will be stored			
		permanently even in case of power failure, and can be locked & protected with			
		password.			
Display mode		3.5" matrix 128*64 LCD screen with backlight (black characters on white			
		screen).			
		Display pages include Digits, Curves, Bar graphs, and so on. Pages switch			
ı		conveniently on the panel. History data can be searched, and time scale of			

curves is changed by operating proper keys on the panel.	
Record interval 9 options for your choice: 1s, 2s, 4s, 6s, 15s, 30s, 60s, 120s, and 240	
Storage time 3 days (record interval of 1s) – 720 days (record interval of 240s)	
Print	Printer interface: RS-232C; Serial-interface printer: SP-A40SH
Operating	Ambient temperature: 0-50°C; relative humidity: ≤ 85RH; isolated from strongly
environment	corrosive gas
Power supply	AC 100-240V (switch power), 50/60HZ; DC 20-29V (switch power)
Power consumption	≤ 5W
Structure	- Standard panel mounted instrument structure

III. Order Specification

①Compensation input mode			③Alarm output (Note 1)		
Code	Compensation input mode	Code	Alarm channel (Relay contact output)		
01 02 (2)Spec	Single-channel uncompensated input Temperature/pressure compensated input cification	X 1 2	No output 1 alarm relay 2 alarm relay		
Code A B C	Code Width*height*depth A 160*80*110mm (horizontal) B 80*160*110mm (vertical)		3 alarm relay 4 alarm relay 5 alarm relay 6 alarm relay		
4 Powe	(4) Power supply				
Code	Voltage range				
A D	AC/DC 100~240V (50/60Hz) DC20~29V				
	(5)Auxiliary functions (all functions below may be selected separated with "/"; those not required may be omitted)				
Transm	ission output (Note 1)	Communication output			
	1				

Transmission output (Note 1)			Communication output				
Code	Output channel		Communication interface				
1	1 transmission output	D1	RS-485 interface (Modbus RTU)				
2	2 transmission outputs	D2	RS232 interface (Modbus RTU)				
3	3 transmission outputs	D3	RS232C printer interface				
4	4 transmission outputs						
Feed o	Feed output						
Code	e Feed output (output voltage)						

1P 1 feed output
2P 2 feed outputs
For example, "2P (12/24) means 2 feed outputs with 12V and 24V feed output respectively.

Applicable to instruments with recording function

USB da	ta transfer	Expans	sion function
Code	Data transfer	Code	Expansion function
U	USB disk (1GB USB flash disk)	SD	SD card expansion (8GB)

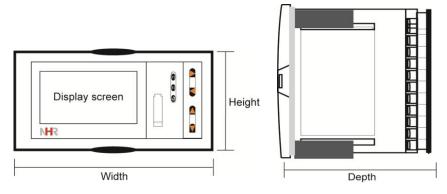
Note: 1. Transmission output and alarm output may be combined, provided that transmission output + alarm output ≤ 6 . If the flow signal type is Frequency, the maximum transmission output is 2, and transmission output + alarm output ≤ 4

★Input signal type (please mark the signal type after the selected model when ordering)

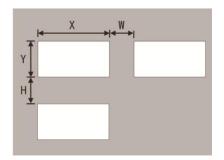
Signal	Measurable range	Signal type	Measurable range
			_

type			
В	400~1800°C	BA2	-200.0~600.0°C
S	-50~1600°C	0-400Ω linear resistance	-9999~99999
K	-100~1300°C	0~20mV	-9999~99999
E	-100~1000°C	0-100 mV	-9999~99999
Т	-100. 0~400.0℃	0~20 mA	-9999~99999
J	-100~1200℃	0~10 mA	-9999~99999
R	-50~1600℃	4~20mA	-9999~99999
N	-100~1300℃	0~5V	-9999~99999
F2	700~2000℃	1~5V	-9999~99999
Wre3-25	0~2300℃	0~10V customized	-9999~99999
Wre5-26	0~2300℃	√ 0~10 mA	0~99999
Cu50	-50.0~150.0℃	√ 4~20 mA	0~99999
Cu53	-50.0~150.0℃	√ 0~5V	0~99999
Cu100	-50.0~150.0℃	√ 1~5V	0~99999
Pt100	-200.0~650.0℃	Frequency	0~10KHz
BA1	-200.0~650.0℃		

★Output signal type (please mark the signal type after the selected model when ordering)


<u> </u>						
Signal type	4-20mA	1-5V	0-10mA	0-5V	0-20mA	0-10V (customized)
Load resistance (RL)	RL≤480Ω	RL≥250KΩ	RL≤960Ω	RL≥250KΩ	RL≤480Ω	RL≥4KΩ

IV. Installation


1. Installation position and environment

The instrument shall be installed away from motors and transformers to avoid impact, shock, and electromagnetic interference. Keep it horizontal during installation. The ambient temperature of the installation site shall be between 0° C and 50° C, and the relative humidity shall not exceed 85%RH, where there're no condensate, corrosive gas, and combustible gas.

2. Dimension (mm)

	Dimension		Dimension Hole Size		Minimum Dista Instru	ance Between ments	
Туре	Width	Height	Depth	Х	Υ	W	Н
Α	160	80	110	152+0.5	76+0.5	38	34
В	80	160	110	76+0.5	152+0.5	34	38
С	96	96	110	92+0.5	92+0.5	38	38

3. Installation

(1) Installing the instrument on mounting panel

Drill installation holes of proper size according to the instrument requirements and put the seal ring on the back of instrument. Then insert the instrument right to the installation hole and install the attaching clamps to back of the board to fix top and bottom surface of the instrument and push two clamps forward so that the instrument could be fixed on the board. Take the protective film off the screen. (If multiple instruments would be installed on one board, minimum distance between instruments as specified in table above shall be considered to ensure adequate heat dissipation and space for installation.)

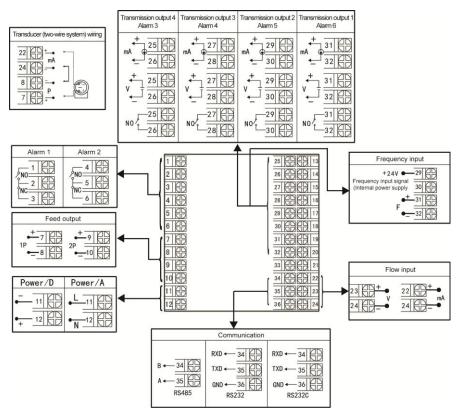
(2) How to take the core out of enclosure

Core of the instrument may be taken out of the enclosure. Push aside two buckles on each side of the front panel, and pull front panel outward to separate the core and enclosure. When reassembly, insert core into the enclosure tightly and fasten them with buckles for reliability.

- (3) Installation instructions
- ★ Cable selection, instrument installation, and electrical wiring must comply with VD0100 "Relevant Rules on Circuit Installation under 1,000V" or relevant local rules;
 - ★ Electrical wiring must be completed by professionals;
- ★ Fuse shall be used in load circuit to protect the circuit and ensure that the relay contact will be open in the case of short circuit or load exceeding the maximum capacity of relay;
- ★ Separate wiring shall be made for input, output, and power supply respectively and parallelism shall be avoided;
 - ★ No other load shall be connected to the power terminal of the instrument;
 - ★ Shielded twisted wires shall be used for sensor and communication.
 - (4) Standard wiring instructions
 - ★ DC signal input (process input)
- 1. In order to reduce electrical interference, wires carrying low-voltage DC signals and sensors input shall be far away from high-voltage-bearing wires. If not, shielded wires

shall be used and grounded at the same point;

- 2. Any device connected between sensors and terminals may influence measurement accuracy due to resistance or current leakage.
 - ★ Thermocouple or pyrometer input

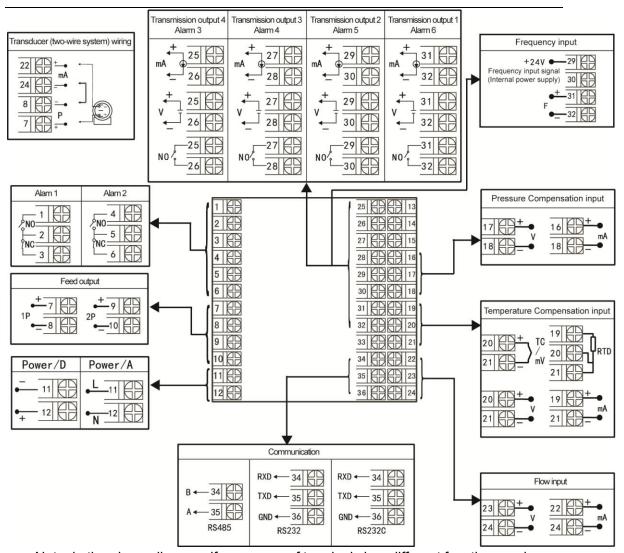

Compensating lead wires appropriate to the thermocouple shall be used as extension wires, which must be shielded.

★ RTD (thermal resistance) input

The resistance of three wires must be the same and shall not exceed 15Ω each.

(5) Wiring diagram

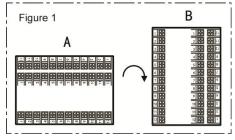
Wiring Diagram of ZNC-7601



Note: in the above diagram, if one group of terminals has different functions, only one of them may be available.

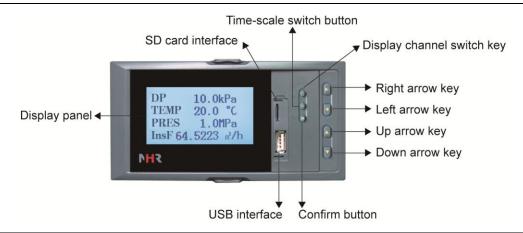
For example, RS485 and RS232 are on the same group of terminals, so only one of them may be selected.

Wiring Diagram of ZNC-7602



Note: in the above diagram, if one group of terminals has different functions, only one of them may be available.

For example, RS485 and RS232 are on the same group of terminals, so only one of them may be selected.

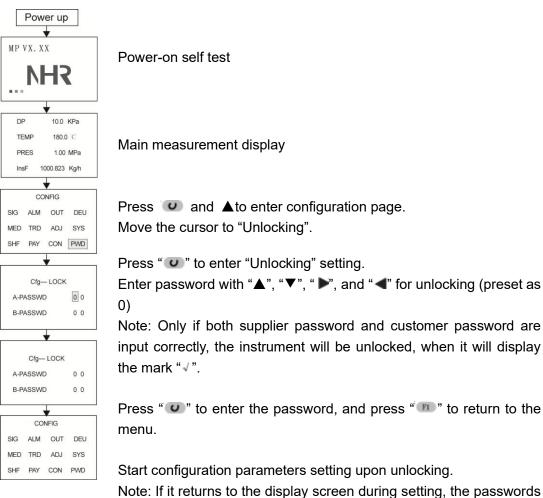

The wiring terminal directions at rear cover of horizontal and vertical instruments are different; see Figure 1.

V. Parameters Setting

1. Panel configuration

Name		Description
		Menu page: to confirm item selection on the menu
		Parameter change: to confirm new set parameter
		Curve display: to enter configuration page combined with "▲" key
	Enter	Historical data display: to confirm the retrospective time to be modified in the
	Enter	next step; to clear cumulant and cumulative power-failure duration combined
		with "◀" key
		Parameter setting: to move position of decimal point combined with "◀" key
		Menu page: to move the cursor down
	•	Parameter change: to decrease the number before the cursor
	Down	Measured value display: to turn display pages of the same channel
		Retrospective time change: to decrease time value before the cursor
	•	Menu page: to move the cursor up
	Up	Parameter change: to increase the number before the cursor
Operation		Retrospective time change: to increase time value before the cursor
keys	⋖ Left	Menu page: to move the cursor left
		Parameter change: to move the cursor left
		Retrospective time change: to move the cursor left
		Historical data display: to search historical data backward from current time, or
		to stop the forward search of historical data
		Menu page: to move the cursor right
		Parameter change: to move the cursor right
	Right	Retrospective time change: to move the cursor right
	rtigrit	Historical data display: to search historical data forward from current time, or to
		stop the backward search of historical data
	F1	Measured value display: to switch display between different channels
		End of setting: to enter measured value display
	F2	Real-time curve or historical curve display: to change time scale of curve
		display

2. Operation


1) Power-on

Turn on the instrument while ensuring it's properly wired. The system would take

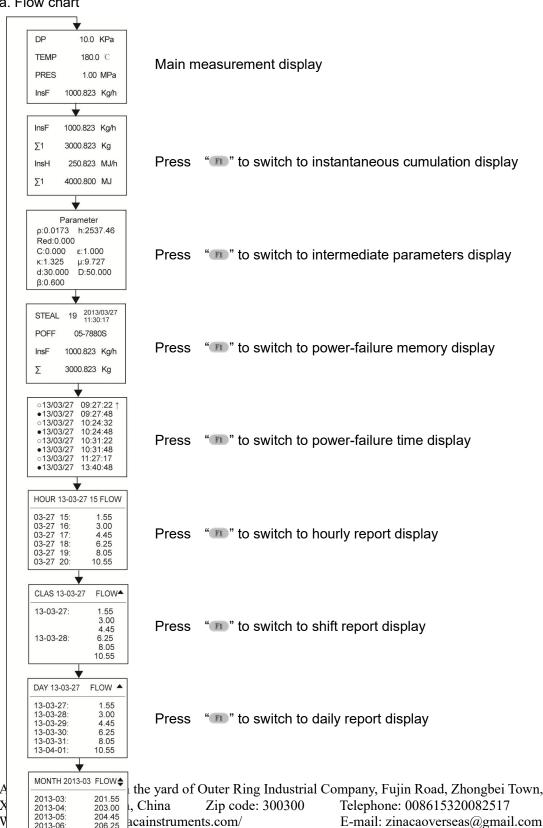
several seconds or minutes for initialization. Please wait a moment.

2) Unlocking

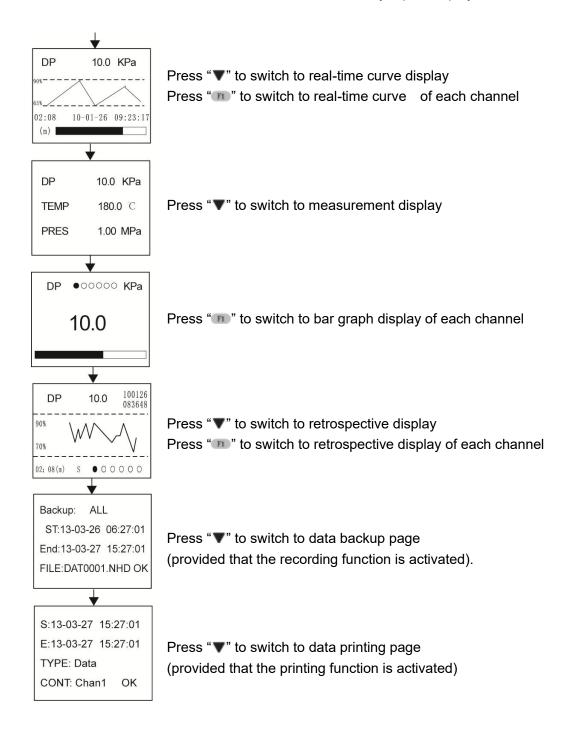
Note: If it returns to the display screen during setting, the passwords shall be entered again for unlocking.

3) Parameters setting (unlocked)

Press "▼" to enter filter coefficient setting and go through the above process. Setting of other parameters is the same as above.


Upon completion, press "m" to return to configuration page. Press "▲", "▼", "▶", and "◀" to set parameters of next item.

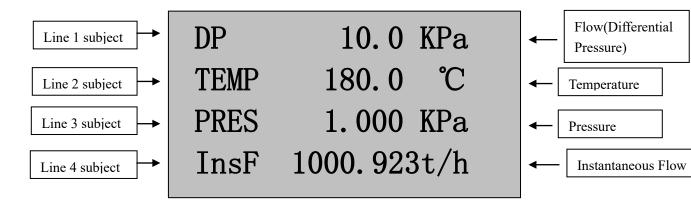
4) Display operation


a. Flow chart

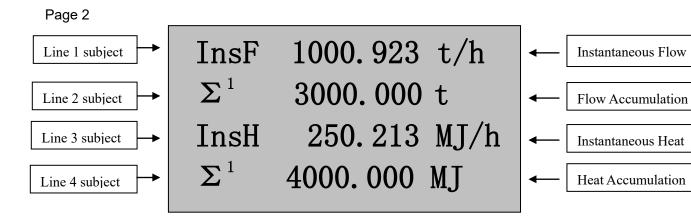
2013-07: 2013-08:

208.05 210.55

Press "m" to switch to monthly report display


b. Instructions for each display:

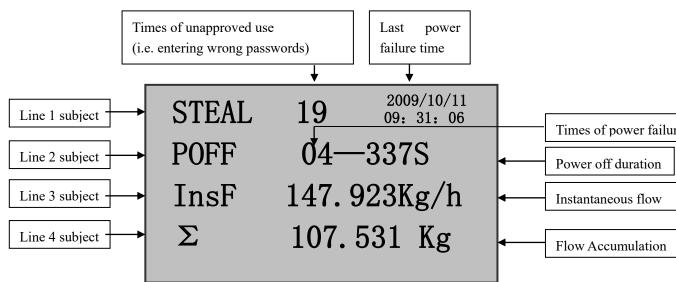
1) Parameters display:


There are 2 pages for flow and relevant parameters, including temperature compensation value, pressure compensation value, differential pressure or flow channel measured value, instantaneous flow, instantaneous heat, cumulative flow of each channel, totalized heat, balance, and residue.

User may use "System" configuration to set items displayed in "Page 1" and "Page 2" and define their orders.

Page 1

Press "F1" to switch to instantaneous cumulation display


- (2) Press "F1" again to switch to intermediate parameters display:
 - ρ: 1.2045 density in operating condition (Kg/m³)
 - C: 0.605 discharge coefficient

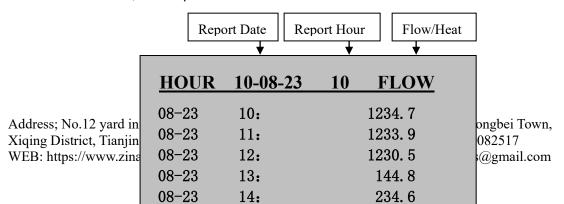
Red: 88346.393 - Reynolds number

- ε: 1.000 expansion coefficient of measured medium
- h: 238.93 enthalpy of measured medium (note: appearing if heat totalizing function is activated)
 - μ: 19.550 dynamic viscosity of measured medium (10⁻⁶ Pa.s)
 - κ: 1.402 isentropic exponent of measured medium
 - β: 0.600 diameter ratio of throttling device
 - d: 30.000 interior diameter of open hole of throttling device (mm)
 - D: 50.000 diameter of tube of throttling device (mm)
 - Z: 0.999 compressibility factor of inorganic or organic gas
 - K: 1.000 instrument factor
- (3) Press "F1" again to switch to power-failure memory display:

It will display time (year, month, date, hour, minute, and second) of last power failure, times of power failure and total failure duration (in seconds), and instantaneous flow and

cumulative flow at the time of last power failure.

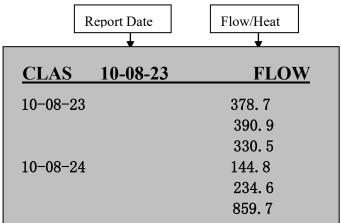
(4) Press "F1" again to switch to power failure time display:


The following will be displayed only when "Power-failure Time" in "System" configuration is set as "ON". It will display the actual time of power failure and power-on during operation, and can display 8 moments of recent power-failure/on in one page.

As seen below, line started with "o" means power failure record, while line started with "•" means power-on record. Other records may be checked by using left and right key for page turning.

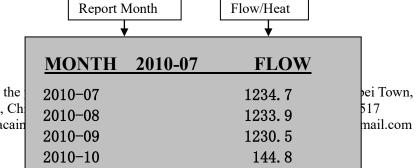
1	Date of power-failure/on	Time of power-failure/on
	-	
0	2010/02/15	08: 37: 53 ↑
	2010/02/15	09: 38: 53
0	2010/02/20	23: 19: 20
	2010/02/21	00: 01: 31
0	2010/02/22	07: 43: 22
	2010/02/23	14: 52: 17
0	2010/02/25	17: 16: 16
•	2010/02/27	22: 10: 10 ↓

(5) Press "F1" again to switch to hourly report display:


Hourly report is used to compile statistics of cumulative flow in every hour within one day, and reports may be checked by setting certain date and time. In case of steam or water measurement, heat report can also be checked.

6 Press "F1" again to switch to shift report display:

Shift report is used to compile statistics of cumulative flow of some shift within one day, and 3 shift reports at maximum may be made in one day. Reports may be checked by setting certain date. In case of steam or water measurement, heat report can also be checked.

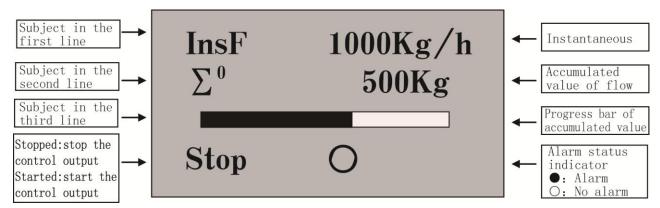

7 Press "F1" again to switch to daily report display:

Daily report is used to compile statistics of cumulative flow of current day, and reports may be checked by setting certain date. In case of steam or water measurement, heat report can also be checked.

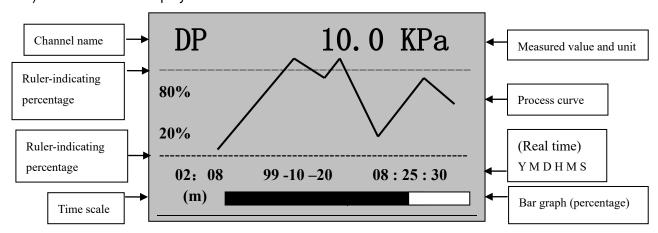
Report Date	Flow/Heat
DAY 10-08-19	FLOW
10-08-19	1234. 7
10-08-20	1233. 9
10-08-21	1230. 5
10-08-22	144.8
10-08-23	234. 6
10-08-24	859. 7

(8) Press "F1" again to switch to monthly report display:

Monthly report is used to compile statistics of cumulative flow of current month, and reports may be checked by setting certain date. In case of steam or water measurement, heat report can also be checked.



Address; No.12 yard in the Xiqing District, Tianjin, Ch WEB: https://www.zinacain


- c. Instructions for display of dynamic measurement process:
- 1) Quantitative Control Image

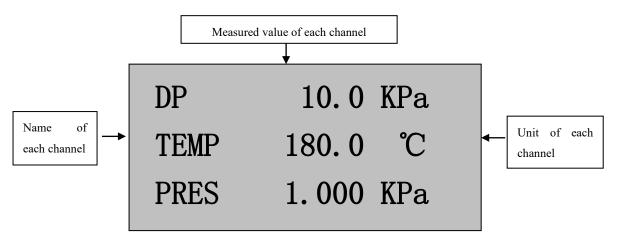
Press the ▼ button at the lower part of screen to turn to quantitative control image (As for the control parameters, this image is available when the quantitative control function is turned on).

- 1. When in the automatic starting mode and instantaneous flow rate is input, the instrument will automatically activate the quantitative control function; when in the manual mode, press switch between the stopped and started function.
- 2. When the output settings are closed and accumulated value of flow reaches the controlling value, the instrument will exhibit alarm status, otherwise, it will not.
- 3. When the automatic resetting function is turned on, the instrument will reset automatically when the accumulated value of flow reaches the controlling value. If the instantaneous flow rate is still being input, the instrument will keep on accumulating.

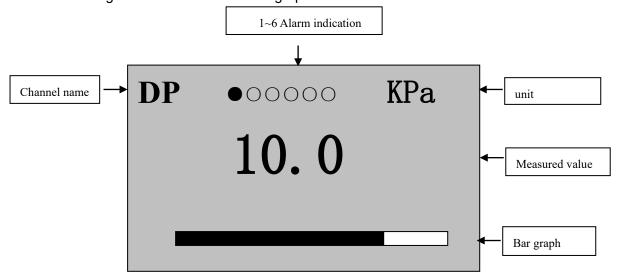
2) Real-time curve display

1: Time scale (m) indicates that the screen shows the curve for a length of 2 minutes

and 8 seconds.


If it shows $^{02;08}_{\rm (h)}$, then it indicates that the screen shows the curve for a length of 2 hours and 8 minutes.

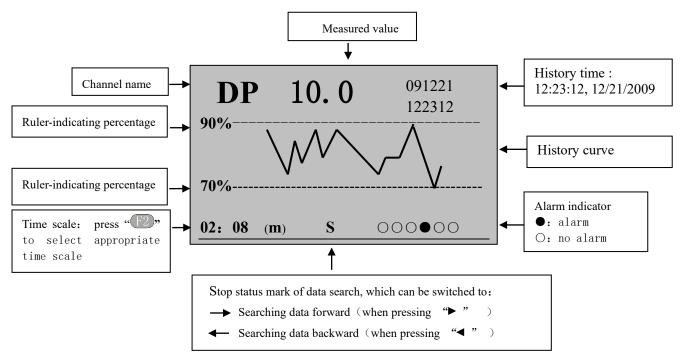
If the recording interval is higher than 15 seconds, the unit of time scale will automatically switch from (m) to (h).


- 2: Press " P " to alternate time scale units to expand or shorten the length of historical data curve.
- 3: Rule-indicating percentage will change with fluctuation of process curve to give the best display performance under limited resolution.
- 4: Measurement subject and channel name is defined with value of "Channel 1 name", "Channel 2 name", "Channel 3 name", and "Channel 4" name in "System" configuration.
- 5: Press "n" in real-time curve display to switch to real-time curve display of flow (differential pressure), temperature, and pressure.

3) Real-time data measurement display

Press "▼" to switch from real-time curve display to measurement display

Press F1 again to show the alarm bar graph below:



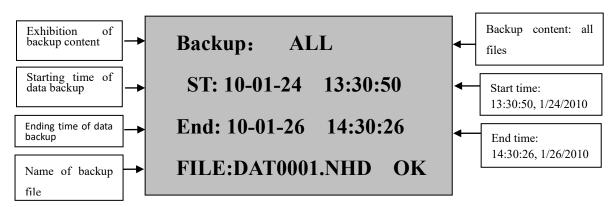
- 1: Alarm 1, 2, 3, 4, 5, or 6 above may be defined to correspond to any input channel (channel 1, 2, 3, or 4) based on user's needs, and alarm at upper limit or lower limit may be set.
- 2: means the relay operates (alarm)
 - O means the relay does not operate (no alarm)
- 3: Press "n" in the alarm bar graph to switch to alarm bar graph of flow (differential pressure), temperature, and pressure.

4) Retrospective display

Press "▼" to switch from real-time data measurement to historical data retrospective display

Note: instructions on historical data retrospective operation: (when the image above is displayed)

- (1) Press "▶" to search historical data forward from current display and press "◀" to stop the search.
- Press "◀" to search historical data backward from current display and press "▶" to stop the search.
- (2) Press "P" to change time scale to expand or shorten the length of historical data curve.
- (3) Press "♥" to return the cursor to time display area on the right above corner, and press "♣" and "▶" to move the cursor and press "♣" and "▼" to increase/decrease value of year, month, date, hour, minute, and second. Press "♥" again for confirmation, and historical data curve of selected time will be shown on the screen.
- (4) Relation between historical curve and historical data: the historical data will be at the intersection of historical curve and right frame of screen.
- (5) Press "n" in the historical data retrospective display image to alternate between flow (differential pressure), temperature, and pressure.


Note: flow clearing

- a. Press " and " a" to enter unlocking password setting in configuration page.
- b. Passwords may be set as follows:

User sets system	*****	Preset as 00
passwords		
Supplier and customer	Cumulative flow, cumulative	Upon setting of
password = ***** + 1	heat, and times and time of	passwords (for
	power failure clearing allowed	example, when the
Supplier and customer	Power failure times and time	initial password is
password = ***** + 2	clearing allowed	100132, values will be
Supplier and customer	Cumulative flow and	cleared when entering
password = ***** + 3	cumulative heat in channel 1	password 100133),
	clearing allowed	press "m" to return to
Supplier and customer	Cumulative flow in channel 2	measurement display,
password = ***** + 4	clearing allowed	and press " " and
Supplier and customer	Cumulative flow in channel 3	"◀" for clearing.
password = ***** + 5	clearing allowed	
Supplier and customer	Cumulative flow in channel 4	
password = ***** + 6	clearing allowed	

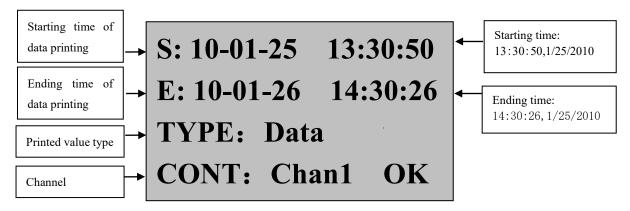
5) Data backup display

Press "▼" to switch from retrospective display to data backup display

Instructions on data backup operation:

Plug the USB disk into the USB interface, and move the cursor to the right position with "◀" and "▶" and use "♠" and "▼" to increase/decrease value of year, month, date, hour, minute, and second. After modification, move the cursor to "Backup" and press "౿" for confirmation, and the screen will display "transferring", indicating that it's backing up data (the duration of data copy depends on data quantity and USB disk performance). When "transferring" disappears, the backup process comes to the end, when the USB disk could be plugged off.

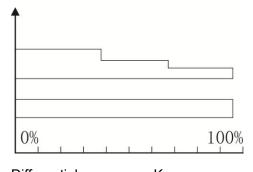
The backup file copied to the USB disk would be in the format of *.NHD, which can only be read with master computer software of New Hong Run, which may be used to view and print historical data and curves and export the same to be Excel files for processing.


Plug SD card into SD interface, and when the time runs to 00:00:00, it will automatically save data of current day to the SD card. During data storage, the starting time will automatically run to 00:00:00 and ending time run to 23:59:59, and it will display "SD" on the screen. When the data storage is over, "SD" will disappear and the file will be named with current date.

Note: USB disk an SD card must be in the format of FAT or FAT32.

It's suggested to use USB disks and SD cards of following brands: Kingston, Unis, and Sony etc.

6) Data printing display (available when printer function is activated)


Press "▼" to switch from data backup display to data printing

1. Manual printing

1) When the printer in system configuration is set as "AS", it will print the data or curve of current channel within the set time length; use "◀" and "▶", "▲" and "▼" to change value of time, type, and channel; after that, move the cursor to "Print" and press "౿" for confirmation, and the screen will display "printing", indicating that it starts to print data or curves.

Format of curve printing:

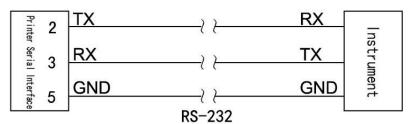
Differential pressure: Kpa Start: 10-07-25 10-00-00 End: 10-07-25 09-58-00 Format of data printing:

100724142610: 625 ----- measured value at the time of ending

100724142609: 625 100724142608: 625

2) When the printer in system configuration is set as "TS", it will print data of all channels at current time; use "◀" and "▶", "▲" and "▼" to change value of time, type, and channel, and set the type as "Data"; after that, move the cursor to "Print" and press "♥" for confirmation, and the screen will display "printing", indicating that it starts to print data. Format of printing:

-----Alarm status: O: no alarm **Alarm**: ● ○ ○ ○ ○ ○ ●: alarm -----Cumulative heat $\Sigma = 0.053MJ$ Instantaneous heat: 0.0000MJ/h-----Instantaneous heat -----Cumulative flow $\Sigma = 0.021 \text{Kg}$ -----Instantaneous flow Instantaneous: 15.0056Kg/h -----Measured pressure Pressure: 1.000Mpa -----Measured temperature Temperature: 50.0°C Differential pressure: 10.0Kpa -------Measured differential pressure Time: 10-07-12 15-00-02 -----Date and time


2. Timed printing

Set interval of timed printing in system configuration; when the interval of measurement equals to interval of time printing, it will automatically control the printer for timed printing (see format of printing above).

3. Alarm printing

When the alarm function is actuated in system configuration, in case of any alarm, it will automatically control the printer for alarm printing (see format of printing above).

Connection between instrument and serial-interface printer:

Note: baud rate of the instrument and printer must be the same (baud rate setting of the instrument could be referred to in Level 2 Parameters Setting and that of the printer could be referred to in printer instructions).


VI. Voltage Range Regulation in Frequency Input

1): With open collector, the input end has a voltage of 10V; with open emitter, there's no voltage;

	Frequency input: OC	Frequency input: OE
JP2 status	1 3	1 3

Voltage regulation:

- 1. Regulate upper limit of input voltage: regulate potentiometer W1 (clockwise rotation for decrease and counterclockwise rotation for increase) so that voltage at negative end of frequency input of pin pair 7 of LM339 is not more than upper limit of input voltage.
- 2. Regulate lower limit of input voltage: regulate potentiometer W2 (clockwise rotation for decrease and counterclockwise rotation for increase) so that voltage at negative end of frequency input of pin pair 8 of LM339 is not less than lower limit of input voltage.
- ★ Regulate W1 and W2 to keep the amplitude of upper limit / lower limit of voltage is within the range of wave shape. The voltage is preset as about 2.5V and 4.5V for lower limit and upper limit amplitude.

2): Frequency amplification (see figure below):

	Amplified voltage input (CP)	Normal voltage input (PP)
JP1 status	1 3	1 3

★ For example, the frequency amplitude of magnetoelectric transducer is relatively low, which cannot be directly collected by the instrument, so amplification circuit is required in the instrument.

VII. Parameters Description

1) "SIG" parameters – when flow with temperature/pressure compensation is calculated, input channel 01 means flow (differential pressure) signal, 02 means temperature signal, and 03 means pressure signal.

Name	Range	Description	Default Value
INPUT	01	The first input channel (unchangeable)	01

_			
TYPE	See table of input	Input signal type (see table of input	4-20mA
	types	signal types)	
UNIT	See table of units	Engineering unit of input channel (see Note 1)	KPa
FILTER	0-19	Set the input signal filter coefficient	0
LOW	-9999 ~ 99999	Lower limit of measuring range (see Note 2 for decimal digit setting)	0
HIGH	-9999 ~ 99999	Higher limit of measuring range (see Note 2 for decimal digit setting)	1000
BAR-LOW	-9999 ~ 99999	Lower limit of bar graph	0
BAR-HIGH	-9999 ~ 99999	Higher limit of bar graph	1000
CUT-OFF	-25.0 ~ 100.0	Percentage of small signal cutoff (see Note 3)	-25.0
CUMULATE	ON	Flow value is cumulated	ON
INPUT	02	The second input channel (unchangeable)	02
TYPE	See table of input types	Input signal type (see table of input signal types)	PT100
UNIT	See table of units	Engineering unit of input channel (see Note 1)	°C
FILTER	0-19 Set the input signal filter coefficient		0
LOW	-9999 ~ 99999	Lower limit of measuring range (see Note 2 for decimal digit setting)	0
HIGH	-9999 ~ 99999	Higher limit of measuring range (see Note 2 for decimal digit setting)	1000
BAR-LOW	-9999 ~ 99999	Lower limit of bar graph	0
BAR-HIGH	-9999 ~ 99999	Higher limit of bar graph	1000
CUT-OFF	-25.0 ~ 100.0	Percentage of small signal cutoff (see Note 3)	-25.0
CUMULATE	If the channel is used for flow signal, ON: cumulation CUMULATE can be set ON, and flow		OFF
INPUT	03	The third input channel (unchangeable)	03
TYPE	See table of input types	Input signal type (see table of input signal types)	4-20mA
UNIT	See table of units	Engineering unit of input channel (see Note 1)	KPa
FILTER	0-19	Set the input signal filter coefficient	0
LOW	-9999 ~ 99999	Lower limit of measuring range (see Note 2 for decimal digit setting)	0.000
HIGH	-9999 ~ 99999	Higher limit of measuring range (see Note 2 for decimal digit setting)	1.000

BAR-LOW	-9999 ~ 99999	Lower limit of bar graph	0.000
BAR-HIGH	-9999 ~ 99999	Higher limit of bar graph	1.000
CUT-OFF	-25.0 ~ 100.0	Percentage of small signal cutoff (see Note 3)	-25.0
CUMULATE	ON: cumulation OFF: no cumulation	If the channel is used for flow signal, CUMULATE can be set ON, and flow value will be cumulated. If set OFF, will not be cumulated.	OFF
INPUT	04	The fourth input channel (unchangeable)	04
TYPE	See table of input types	Input signal type (see table of input signal types)	NO
UNIT	See table of units	Engineering unit of input channel (see Note 1)	MPa
FILTER	0-19	Set the input signal filter coefficient	0
LOW	-9999 ~ 99999	Lower limit of measuring range (see Note 2 for decimal digit setting)	0
HIGH	-9999 ~ 99999	Higher limit of measuring range (see Note 2 for decimal digit setting)	1000
BAR-LOW	-9999 ~ 99999	Lower limit of bar graph	0
BAR-HIGH	-9999 ~ 99999	Higher limit of bar graph	1000
CUT-OFF	-25.0 ~ 100.0	Percentage of small signal cutoff (see Note 3)	-25.0
CUMULATE ON: cumulation OFF: no cumulation		If the channel is used for flow signal, CUMULATE can be set ON, and flow value will be cumulated. If set OFF, will not be cumulated.	OFF

Note 1: Table of Unit (if special unit is required, it should be specified in the order.)

			· · · · · · · · · · · · · · · · · · ·				,					,	
No.	0	1	2	3	4	5	6	7	8	9	10	11	12
Uni	°C	Kaf	Pa	KP	MPa	mmH	mmH2	bar	Ka/b	Ka/m	Kg/	t/h	t/m
t	C	Kgf	Га	а	IVIFA	g	0	Dai	Kg/h	Kg/m	S	VII	VIII
No.	13	14	15	16	17	18	19	20	21	22	23	24	25
Uni	t/s	l/h	I/m	l/s	m³/h	m³/m	m³/s	Nm³/	Nm³/	Nm³/	KJ/	KJ/	KJ/
t	U/S	1/11	1/111	1/5	111-711	1117/111	111-75	h	m	S	h	m	s
No.	26	27	28	29	30	31	32	33	34	35	36	37	38
Uni	MJ/	MJ/	MJ/	GJ/	GJ/	GJ/s	ka	t	ı	m³	Nm	KJ	MJ
t	h	m	s	h	m	G3/S	kg	١	L	1115	3	ΝJ	IVIJ
No.	39	40	41	42	43	44	45	46	47	48	49	50	
Uni	GJ	m	m/s	V	KV	Α	KA	KW	HZ	%	PH	mm	
t	GJ	m	111/5	V	INV	A	I NA	r\vv	ПΖ	70	FΠ	mm	

Note 2: decimal digit setting: if it's required to display value with decimal places in the setting of measuring range, press "✓" and "◀" to move the decimal place from right to left.

When the point moves to the first decimal place in the right, it will display value with

one decimal place, and when the point moves to the second, it will display value with two decimal places.

For example, if upper limit of measuring range is set as "1.0", the instrument will display "1.0", and if it's set as "1.00", the instrument will display "1.00". Number of decimal places of upper limit of measuring range shall be set first, and that of lower limit will follow the same rule as upper limit.

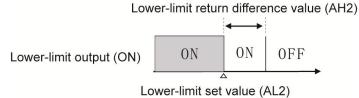
Negative range setting: move the cursor to the first place in the left, and press "▼" so that the instrument will display "0", and then press "▼" again – the negative mark "-"will be displayed.

Note 3: Small signal cutoff: if the measured value < (upper limit of measuring range – lower limit of measuring range)* small signal cutoff percentage + lower limit of measuring range, the measured value will be displayed as lower limit of measuring range. (This function only serves voltage and current signals; for frequency signal, its engineering value will be cut off.)

2) "ALM" parameters

Name	Range	Description	Default Value
ALM-CHAN	01	The first alarm channel(unchangeable)	01
INPUT	1 – the 1st input channel 2 – the 2nd input channel 3 – the 3rd input channel 4 – the 4th input channel 5 –flow 6 –heat	Input channel (1 – 6) corresponding to the alarm channel	05
ALM-TYPE	NO: no alarm AL: Low alarm AH: High alarm SAL: reserved SAH: reserved LAL: Low cumulation alarm LAH: High cumulation alarm LAHC: Low cumulation alarm and clear cumulation LAHC: High cumulation alarm and clear cumulation	Alarm type Note: when the alarm type is set as LAL, LAH, LALC or LAHC, the input channel must be set flow or heat	АН
THRESHLD	-9999 ~ 99999	Set the alarm threshold value (see Note 4)	50
HYSTERES	0 ~ 99999	Set the alarm threshold hysteresis, which can prevent signal oscillation near the alarm threshold.	00
ALM-CHAN	02	The 2nd alarm channel(unchangeable)	02
INPUT	Same as above	Input channel (1 – 6) corresponding to the alarm channel	05
ALM-TYPE	Same as above	Alarm type	АН

		Note: when the alarm type is set as LAL, LAH,	
		LALC or LAHC, the input channel must be set	
		flow or heat	
THRESHLD	-9999 ~ 99999	Set the alarm threshold value (see Note 4)	50
		Set the alarm threshold hysteresis, which can	
HYSTERES	0 ~ 99999	prevent signal oscillation near the alarm	00
		threshold.	
ALM-CHAN	03	The 3rd alarm channel(unchangeable)	03
INDLIT	Sama as above	Input channel (1 – 6) corresponding to the alarm	05
INPUT	Same as above	channel	05
		Alarm type	
	Company of the comp	Note: when the alarm type is set as LAL, LAH,	A.I.I.
ALM-TYPE	Same as above	LALC or LAHC, the input channel must be set	AH
		flow or heat	
THRESHLD	-9999 ~ 99999	Set the alarm threshold value (see Note 4)	50
		Set the alarm threshold hysteresis, which can	
HYSTERES	0 ~ 99999	prevent signal oscillation near the alarm	00
		threshold.	
ALM-CHAN	04	The 4th alarm channel(unchangeable)	04
		Input channel (1 – 6) corresponding to the alarm	25
INPUT	Same as above	channel	05
		Alarm type	
		Note: when the alarm type is set as LAL, LAH,	
ALM-TYPE	Same as above	LALC or LAHC, the input channel must be set	AH
		flow or heat	
THRESHLD	-9999 ~ 99999	Set the alarm threshold value (see Note 4)	50
		Set the alarm threshold hysteresis, which can	
HYSTERES	0 ~ 99999	prevent signal oscillation near the alarm	00
		threshold.	
ALM-CHAN	05	The 5th alarm channel(unchangeable)	05
INDUT	0 1	Input channel (1 – 6) corresponding to the alarm	05
INPUT	Same as above	channel	05
		Alarm type	
		Note: when the alarm type is set as LAL, LAH,	
ALM-TYPE	Same as above	LALC or LAHC, the input channel must be set	AH
		flow or heat	
THRESHLD	-9999 ~ 99999	Set the alarm threshold value (see Note 4)	50
		Set the alarm threshold hysteresis, which can	
HYSTERES	0 ~ 99999	prevent signal oscillation near the alarm	00
		threshold.	
ALM-CHAN	06	The 6th alarm channel(unchangeable)	06
		Input channel (1 – 6) corresponding to the alarm	
INPUT	Same as above	channel	05

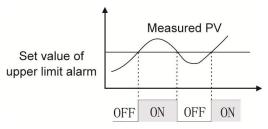


ALM-TYPE	Same as above	Alarm type Note: when the alarm type is set as LAL, LAH, LALC or LAHC, the input channel must be set flow or heat	АН
THRESHLD	-9999 ~ 99999	Set the alarm threshold value (see Note 4)	50
HYSTERES	0 ~ 99999	Set the alarm threshold hysteresis, which can prevent signal oscillation near the alarm threshold.	00

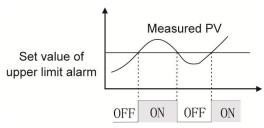
Note 4: Alarm mode: (Alarm threshold hysteresis can prevent signal oscillation near the alarm threshold, frequent alarms and cancellation of report)

Output status:

★ Signal value increases from a low value:



★ Signal value decreases from a high value:


Upper-limit return difference value (AH1)

★ High alarm output:

★ Low alarm output:

3) "OUTt" parameters

Name	Range	Description	Default Value
OUT-CHAN	01	The 1st output channel(unchangeable)	t 01
INPUT	1 – the 1st input channel	Input channel (1 - 6) corresponding	g 05

1	1		
	2 – the 2nd input channel	to the analog output channel	
	3 – the 3rd input channel		
	4 – the 4th input channel		
	5 –flow		
	6 –heat		
	No: no output		
	Current: 0~20mA, 0~10mA,	Signal output type of transmission	
OUT-TYPE	4~20mA	(any special requirement shall be	4~20mA
	Voltage: 0~5V, 1~5V, 0~10V	specified)	
	voitage: 0~5v, 1~5v, 0~10v	-	
OUT-LOW	-9999 ~ 99999	The lowest signal value of	0
		transmission	
OUT-HIGH	-9999 ~ 99999	The highest signal value of	1000
001-111011	-5555 55555	transmission	1000
OUT OUAN	00	The 2nd output	00
OUT-CHAN	02	channel(unchangeable)	02
		Input channel (1 – 6) corresponding	
INPUT	Same as above	to the analog output channel	05
		Signal output type of transmission	
OUT TYPE	Come as above		4 20 4
OUT-TYPE	Same as above	(any special requirement shall be	4~20mA
		specified)	
OUT-LOW	-9999 ~ 99999	The lowest signal value of	0
001 2011	0000 00000	transmission	
OUT-HIGH	-9999 ~ 99999	The highest signal value of	1000
OUT-HIGH	-9999 ** 99999	transmission	1000
		The 3rd output	
OUT-CHAN	03	channel(unchangeable)	03
		Input channel (1 – 6) corresponding	
INPUT	Same as above	to the analog output channel	05
		Signal output type of transmission	
OUT-TYPE	Same as above	(any special requirement shall be	4~20mA
001-1112	Came as above		4 Z0111A
		specified)	
OUT-LOW	-9999 ~ 99999	The lowest signal value of	0
		transmission	
OUT-HIGH	-9999 ~ 99999	The highest signal value of	1000
231111311	3300 30000	transmission	1000
OUT CHAN	04	The 4th output	04
OUT-CHAN	U4	channel(unchangeable)	U 4
		Input channel (1 – 6) corresponding	
INPUT	Same as above	to the analog output channel	05
		Signal output type of transmission	
OUT-TYPE	Same as above	(any special requirement shall be	4~20mA
OUI-TIPE	Jaille as above		+ 20111A
OUT LOW	0000 0000	specified)	
OUT-LOW	-9999 ~ 99999	The lowest signal value of	0

		trans	mission				
	-9999 ~ 99999	The	highest	signal	value	of	1000
OUT-HIGH	-9999 ~ 99999	trans	mission				1000

4) "DEV" parameters

When some of following parameters marked with "*", it means no setting is required.

Name	Range	s marked with """, it means no setting Description	Default Value
DEVICE	Flange pressure plate, linear flow meter, etc.	Primary measuring devices such as orifice plate and vortex street are used (Note 1)	actual condition
С	0~ 999999	Discharge coefficient	actual condition
ε	0~ 999999	Expansion factor	actual condition
TUBE	A3 steel, Cr6SiMo, etc.	The material used to manufacture pipes, and different materials have different expansion coefficient λ D (Note 2)	actual condition
THROTTLE	A3 steel, Cr6SiMo, etc.	The material used to manufacture throttling parts(orifice plate, etc.), and different materials have different expansion coefficient λ_d (Note 2)	actual condition
D20	0 – 999999	The pipe diameter D20 at 20°C (in mm)	actual condition
d20	0 – 999999	Throttling piece diameter d20 at 20°C (in mm)	actual condition
λD	0 – 999999	Linear expansion coefficient of tube material – λ D (in 10 ⁻⁶ mm/(mm.°C))	actual condition
λ _d	0 – 999999	Linear expansion coefficient of throttling piece material $-\lambda_d$ (in 10^{-6} mm/(mm.°C))	actual condition
SQRT	YES/NO	YES: When differential pressure transmitter has no square root computation, and the instrument needs to do this for differential pressure signal. NO: When differential pressure transmitter has square root computation	YES
SEGMENTS	1 – 8	For measuring devices of other flow meters of differential pressure type or frequency-type vortex street flow meter, K coefficient may be divided into several segments (at maximum of 8	8

RANGE1 0 – 999999 K=K1, when : 0 ≤ differential pressure or frequency ≤ RANGE1 100 K1 0 – 999999 K1 coefficient 1 RANGE2 0 – 999999 K2 when : RANGE1 ≤ differential pressure or frequency ≤ RANGE2 100 K2 0 – 999999 K2 coefficient 1 RANGE3 0 – 999999 K3 coefficient 1 K3 0 – 999999 K3 coefficient 1 RANGE4 0 – 999999 K3 coefficient 1 RANGE4 0 – 999999 K4 coefficient 1 K4 0 – 999999 K4 coefficient 1 RANGE5 0 – 999999 K5 coefficient 1 RANGE5 0 – 999999 K5 coefficient 1 RANGE6 0 – 999999 K5 coefficient 1 RANGE6 0 – 999999 K6 coefficient 1 K6 0 – 999999 K6 coefficient 1			segments)	
RANGE2 0 - 999999 K=K2, when : RANGE1 ≤ differential pressure or frequency ≤ RANGE2 100 K2 0 - 999999 K2 coefficient 1 RANGE3 0 - 999999 K2 coefficient 1 K3 0 - 999999 K3 coefficient 1 RANGE4 0 - 999999 K3 coefficient 1 RANGE4 0 - 999999 K4 coefficient 1 K4 0 - 999999 K4 coefficient 1 RANGE5 0 - 999999 K4 coefficient 1 RANGE5 0 - 999999 K5 coefficient 1 RANGE6 0 - 999999 K5 coefficient 1 RANGE6 0 - 999999 K6 coefficient 1 K6 0 - 999999 K6 coefficient 1	RANGE1	0 – 999999	,	100
RANGE2 0 - 999999 pressure or frequency ≤ RANGE2 100 K2 0 - 999999 K2 coefficient 1 RANGE3 0 - 999999 K=K3, when : RANGE2 ≤ differential pressure or frequency ≤ RANGE3 100 K3 0 - 999999 K3 coefficient 1 RANGE4 0 - 999999 K4 coefficient 1 K4 0 - 999999 K4 coefficient 1 RANGE5 0 - 999999 K5 coefficient 1 K5 0 - 999999 K5 coefficient 1 RANGE6 0 - 999999 K5 coefficient 1 RANGE6 0 - 999999 K6 coefficient 1	K1	0 – 999999	K1 coefficient	1
RANGE3 0 - 999999 K=K3, when : RANGE2 ≤ differential pressure or frequency ≤ RANGE3 100 K3 0 - 999999 K3 coefficient 1 RANGE4 0 - 999999 K=K4, when : RANGE3 ≤ differential pressure or frequency ≤ RANGE4 100 K4 0 - 999999 K4 coefficient 1 RANGE5 0 - 999999 K5, when : RANGE4 ≤ differential pressure or frequency ≤ RANGE5 100 K5 0 - 999999 K5 coefficient 1 RANGE6 0 - 999999 K6 coefficient 1 K6 0 - 999999 K6 coefficient 1	RANGE2	0 – 999999	·	100
RANGE3 0 - 999999 pressure or frequency ≤ RANGE3 100 K3 0 - 999999 K3 coefficient 1 RANGE4 0 - 999999 K4, when : RANGE3 ≤ differential pressure or frequency ≤ RANGE4 100 K4 0 - 999999 K4 coefficient 1 RANGE5 0 - 999999 K5, when : RANGE4 ≤ differential pressure or frequency ≤ RANGE5 100 K5 0 - 999999 K5 coefficient 1 RANGE6 0 - 999999 K6 coefficient 100 K6 0 - 999999 K6 coefficient 1	K2	0 – 999999	K2 coefficient	1
RANGE4 0 – 999999 K=K4, when : RANGE3 ≤ differential pressure or frequency ≤ RANGE4 100 K4 0 – 999999 K4 coefficient 1 RANGE5 0 – 999999 K=K5, when : RANGE4 ≤ differential pressure or frequency ≤ RANGE5 100 K5 0 – 999999 K5 coefficient 1 RANGE6 0 – 999999 K=K6, when : RANGE5 ≤ differential pressure or frequency ≤ RANGE6 100 K6 0 – 999999 K6 coefficient 1	RANGE3	0 – 999999	·	100
RANGE4 0 - 999999 pressure or frequency ≤ RANGE4 100 K4 0 - 999999 K4 coefficient 1 RANGE5 0 - 999999 K=K5, when : RANGE4 ≤ differential pressure or frequency ≤ RANGE5 100 K5 0 - 999999 K5 coefficient 1 RANGE6 0 - 999999 K=K6, when : RANGE5 ≤ differential pressure or frequency ≤ RANGE6 100 K6 0 - 999999 K6 coefficient 1	K3	0 – 999999	K3 coefficient	1
RANGE5 $0 - 999999$ K=K5, when : RANGE4 ≤ differential pressure or frequency ≤ RANGE5 100 K5 $0 - 999999$ K5 coefficient 1 RANGE6 $0 - 999999$ K=K6, when : RANGE5 ≤ differential pressure or frequency ≤ RANGE6 100 K6 $0 - 999999$ K6 coefficient 1	RANGE4	0 – 999999		100
RANGE5 $0 - 999999$ pressure or frequency \leq RANGE5 100 K5 $0 - 999999$ K5 coefficient 1 RANGE6 $0 - 999999$ K=K6, when : RANGE5 \leq differential pressure or frequency \leq RANGE6 100 K6 $0 - 999999$ K6 coefficient 1	K4	0 – 999999	K4 coefficient	1
RANGE6 $0-999999$ $K=K6$, when : RANGE5 \leq differential pressure or frequency \leq RANGE6 100 100 100	RANGE5	0 – 999999	·	100
RANGE6 0 - 999999 pressure or frequency ≤ RANGE6 100 K6 0 - 999999 K6 coefficient 1	K5	0 – 999999	K5 coefficient	1
	RANGE6	0 – 999999	·	100
K KZ when a DANOGO of PK C L	K6	0 – 999999	K6 coefficient	1
RANGE7 0 – 999999 K=K7, when : RANGE6 ≤ differential pressure or frequency ≤ RANGE7 100	RANGE7	0 – 999999	K=K7, when : RANGE6 ≤ differential pressure or frequency ≤ RANGE7	100
K7 0 – 999999 K7 coefficient 1	K7	0 – 999999	K7 coefficient	1
RANGE8 0 – 999999 K=K8, when : RANGE7 ≤ differential pressure or frequency ≤ RANGE8 100	RANGE8	0 – 999999	·	100
K8 0 – 999999 K8 coefficient 1	K8	0 – 999999	K8 coefficient	1

Note 1: Primary instrument devices

Flange pressure plate Machined classical Venturi tube

Angle pressure plate Thick iron wielding section of Venturi tube

D and D/2 pressure plate V-cone flow meter

ISA932 nozzle Other differential pressure flow meter Long diameter nozzle Frequency-type vortex flow meter

Venturi nozzle Linear flow meter

Casting-type Venturi tube

Note 2: Tube or Throttle materials

15 steel, A3 steel Cr6SiMo

A3F, B3 steel X20CrMoWV121

10 steel 1Cr18Ni9Ti

20 steel Ordinary carbon steel
45 steel Industrial copper

1Cr13, 2Cr13 Copper 1Cr17 brass

12CrlMoV Grey cast iron

10CrMo910

User-defined

5) "MED" parameters

When some of following parameters marked with "*", it means no setting is required.

Name	Range	Description	Preset Value		
	Steam, water,	Flow medium to be measured, such as steam,	actual		
MEDIUM	etc.	water, and gas (Note 1)	condition		
		Local atmospheric pressure PA (in MPa). If the			
PRESSURE	-9999.9 ~	pressure compensation channel is absolute	0.10133		
FRESSORE	999999	pressure, the atmospheric pressure should be set	0.10133		
		0.			
T0	0°C or 20°C	Standard conditions temperature, T0 = 0°C or 20°C;	20°C		
	0 0 01 20 0	Standard conditions Pressure, P0 = 0.10133Mpa.	20 0		
		Density of medium in standard condition (in	actual		
ρ 0	0 ~ 999999	Kg/m3). It needs to be set if the medium is other	condition		
		gas or liquid.	CONTRIBUTION		
HUMID	0 – 100	Relative humidity of humid gas (in %)	0		
HUMID0	0 – 100	Under standard condition of humid gas (in %)	0		
DRYNESS	0 – 100	Dryness of saturated steam (in %)	100		
		Compressibility factor of gas in operating condition	actual		
Z	0 ~ 999999	(dimensionless); This parameter needs to be set if	condition		
		the measured medium is other gas.	55		
		Isentropic exponent of medium κ (dimensionless);			
		this parameter needs to be set if the measuring	actual		
K	0 ~ 999999	device is throttling device of varied flow meters of	condition		
		differential pressure type (except V-cone flow	CONTRIBUTION		
		meter) and the medium is other gas or liquid.			
		Dynamic viscosity of medium μ (in Pa.s); this			
		parameter needs to be set if the measuring device	actual		
μ	0 ~ 999999	is throttling device of varied flow meters of	condition		
		differential pressure type (except V-cone flow	2211414311		
		meter) and the medium is other gas or liquid.			
	-9999.9 ~	Monomial coefficient of quadratic polynomial of			
A1	999999	liquid temperature compensation; see liquid	1		
	222000	density formula.			
	-9999.9 ~	Quadratic coefficient of quadratic polynomial of			
A2	999999	liquid temperature compensation; see liquid	1		
density formula.					
The fo	The following parameters will be applicable only when the medium is manufactured gas.				
Air	0 ~ 100.00	Air percent by volume (%)	actual		
		, , , , ,	condition		
N ₂	0 ~ 100.00	Nitrogen percent by volume (%)	actual		
		, , ,	condition		

O_2	0 ~ 100.00	Oxygen percent by volume (%)	actual
	2 20.00	- , , , , , , , , , , , , , , , , , , ,	condition
He	0 ~ 100.00	Helium percent by volume (%)	actual
	0 100.00	rionam porcont by volume (70)	condition
H_2	0 ~ 100.00	Hydrogen percent by volume (%)	actual
1 12	0 100.00	Trydrogen percent by volume (70)	condition
Ar	0 ~ 100.00	Argon percent by volume (%)	actual
7.0	0 100.00	7 agon percent by volume (70)	condition
СО	0 ~ 100.00	Carbon monoxide percent by volume (%)	actual
00	0 % 100.00	Carbon monoxide percent by volume (70)	condition
CO ₂	0 ~ 100.00	Carbon dioxide percent by volume (%)	actual
002	0 % 100.00	Carbon dioxide percent by volume (70)	condition
H-6	0 - 100 00	Sulfurated by dragon percent by yellima (0/)	actual
H ₂ S	0 ~ 100.00	Sulfureted hydrogen percent by volume (%)	condition
	0 400 00		actual
NH ₃	0 ~ 100.00	Ammonia percent by volume (%)	condition
011	0 400 00		actual
CH₄	0 ~ 100.00	Methane percent by volume (%)	condition
0.11	0 100 00	FI (0)	actual
C ₂ H ₆	0 ~ 100.00	Ethane percent by volume (%)	condition
0.11	0 400 00		actual
C ₃ H ₈	0 ~ 100.00	Propane percent by volume (%)	condition
			actual
C ₄ H ₁₀	0 ~ 100.00	Butane percent by volume (%)	condition
0.11			actual
C ₂ H ₄	0 ~ 100.00	Ethylene percent by volume (%)	condition
0	0 400 00		actual
C₃H ₆	0 ~ 100.00	Propylene percent by volume (%)	condition
			actual
C ₄ H ₈	0 ~ 100.00	Butylene percent by volume (%)	condition
			actual
C ₂ H ₂	0 ~ 100.00	Ethyne percent by volume (%)	condition
		Sum of percent by volume of above 18	
	0 ~ 100.00	components, which would be calculated	actual
SUM		automatically by the instrument and unchangeable.	condition
		The sum of percent by volume shall be: 100±0.01%	
Note 1: Flow	<u>.</u>	2. [2. 2. 2. 3] . 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	

Note 1: Flow medium:

Saturated steam temperature compensation	H2	C4H10
Saturated steam pressure compensation	Ar	C2H4
Steam	CO	C3H6
0.6Mpa water	CO2	C4H8
1.6Mpa water	H2S	C2H2
Air	NH3	Other gas

	N2	CH4	Liquid
	O2	C2H6	Manufactured
gas			
	He	C3H8	

6) "TRD" parameters

Name	Range	Description	Preset Value
F-UNIT	Kg/h, Kg/m, etc.	Select flow unit (Note 1)	Kg/h
H-UNIT	KJ/h, KJ/m, etc.	Select heat unit (Note 2)	MJ/h
LOW-THR	0 ~ 999999	Low Threshold Value, See Note 3	0
LOW-VAL	0 ~ 999999	Small Flow Value, See Note 3	0
OVER-THR	0 ~ 999999	Over Threshold Value, See Note 3	100
OVER-MUL	0 ~ 999999	Over coefficient(dimensionless), See Note 3	0
ACCU-MUL	0 ~ 999999	Accumulation multiple rate(dimensionless), See Note 3	1
F-COMP	0 ~ 999999	Flow compensation during power down(see Note 5)	0
H-COMP	0 ~ 999999	Heat compensation during power down(see Note 5)	0
CONST-P	0 ~ 999999	Constant Pressure when pressure signal cut off	1
CONST-T	0 ~ 999999	Constant Temperature when temperature signal cut off	20
F-DIGIT	0 ~ 5	Maximum decimal digit of instantaneous flow (0 – 5 decimal digit)	3
H-DIGIT	0 ~ 5	Maximum decimal digit of instantaneous heat (0 – 5 decimal digit)	3
К	0 ~ 999999	Adjustment of instantaneous flow Kx+b, where K means proportional factor	1.00000
В	0 ~ 999999	Adjustment of instantaneous flow Kx+b, where B means constant factor	0.0
F-RANGE	0 ~ 999999	Measuring range of instantaneous flow, which is only used for display on computer and transmission.	2000.0
H-RANGE	0 ~ 999999	Measuring range of instantaneous heat, which is only used for display on computer and transmission.	2000.0

Note 1: the following units of instantaneous flow are available:

Kg/h, kg/m, kg/s, t/h, t/m, t/s, l/h, l/m, l/s, m³/h, m³/m, m³/s, Nm³/h, Nm³/m, Nm³/s

Note 2: the following units of instantaneous heat are available:

KJ/h, KJ/m, KJ/s, MJ/h, MJ/m, MJ/s, GJ/h, GJ/m, GJ/s

Note 3: calculation of cumulative flow:

If instantaneous flow < Low Threshold Value, Cumulative flow = Previous cumulative flow + Small Flow Value;

If Low Threshold Value ≤ instantaneous flow ≤ Over Threshold Value, Cumulative flow = Previous cumulative flow + instantaneous flow;

If instantaneous flow > Over Threshold Value, Cumulative flow = Previous cumulative flow + Over coefficient * (instantaneous flow – Over Threshold Value) + Over Threshold Value

Note 4: Cumulative flow = Previous cumulative flow + Accumulation multiple rate * instantaneous flow.

Cumulative heat = Previous cumulative heat + Accumulation multiple rate * instantaneous heat

Note 5: Complementary Cumulative Flow = Flow compensation during power down * duration of power down; Complementary Cumulative Heat = Heat compensation during power down * duration of power down;

7) "ADJ" parameters

Name	Range	Description	Default Value
INPUT	01	The 1st input channel (unchangeable)	01
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
К	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1
INPUT	02	The 2nd input channel (unchangeable)	02
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
К	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1
INPUT	03	The 3rd input channel (unchangeable)	03
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
К	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1
INPUT	04	The 4th input channel (unchangeable)	04
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
К	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1
OUT-CHAN	01	The 1st output channel (unchangeable)	01
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
К	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1
OUT-CHAN	02	The 2nd output channel (unchangeable)	02
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0

К	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1
OUT-CHAN	03	The 3rd output channel (unchangeable)	03
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
К	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1
OUT-CHAN	04	The 4th output channel (unchangeable)	04
В	-9999 ~ 99999	Adjustment of signal value Kx+B, where B is constant factor	0
К	-9999 ~ 9999	Adjustment of signal value Kx+B, where K is proportional factor	1

8) "SYS" parameters

Name	Range	Description	Default Value
DATE	Y-M-D	Current date, year-month-day	Current date
TIME	H-M-S	Current time, hour-minute-second	Current time
CJC-B	-99999 ~ 999999	Cold junction compensation KX+B, where B is constant factor	0
CJC-K	-99999 ~ 999999	Cold junction compensation KX+B, where K is proportional factor	1
ADDRESS	1 ~ 255	Instrument address of communication	1
BAUD	1200/2400/4800/9600 bps	Baud rate of the serial communication	9600
PRINTER	NO, AS, TS	Printing mode: NO: no printing function AS: when manual printing data, it will print measured value of selected channel within the set time; TS: when manual printing data, it will print measured value of all channels at current time	AS
PRT-INTR	1- 2000 minutes	The interval time of equal-interval print	1 (minute)
PRT-STRT	H-M	Start time of equal-interval print	00:00
ALM-PRT	ON/OFF	ON: print when new alarm occur OFF: no print when new alarm occur	OFF
REC-INTR	1/2/4/6/15/30/60/120/240s	Record interval time	1 second
CH1-NAME	00: CH01, Channel 1 01: TEMP, Temperature 02: PRES, Pressure	Channel name of the 1st input channel	4

	03: FLOW		1
	04: DP, Differential Pressure		
	05: TIN, Inlet Temperature		
	06: TOUT, Outlet Temperature		
	07: blank		
	or. siaint	Channel name of the 2nd input	
CH2-NAME	Same as above	channel	1
0110 1111		Channel name of the 3rd input	
CH3-NAME	Same as above	channel	2
CH4-NAME	Same as above	Channel name of the 4th input	4
		channel	
	ON: automatic page switch		
AUT-PAGE	(interval of about 10s)	Page switch option:	OFF
	OFF: manual page switch	automatic/manual page switch	
	(press F1)		
		Line content:	
		Xi Content	
		0 – blank	
		1 – measured value of signal	
		channel 1	
		2 – measured value of signal	
		channel 2	
	Page 1 has 4 lines, its content is	3 – measured value of signal	
	defined by the following 4 bits:	channel 3	
	1 0 X1 X2 X3 X4:	4 – measured value of signal	
PAGE1	X1: 1st line content	channel 4	User-defined
	X2: 2nd line content	5 – instantaneous flow	
	X3: 3rd line content	6 – instantaneous heat	
	X4: 4th line content	7 – instantaneous cold	
		8 – cumulative flow	
		9 – cumulative heat	
		A – cumulative flow of channel 2	
		B – cumulative flow of channel 3	
		C – cumulative flow of channel 4	
		D – user balance	
	D 41 42 2 2 2 2	E – residual flow subscribed	
	Page 1 has 4 lines, its content is		
	defined by the following 4 bits:		
D4.050	2 0 X1 X2 X3 X4:	Company of the control of the contro	Haar Joff
PAGE2	X1: 1st line content	Same as above	User-defined
	X2: 2nd line content		
	X3: 3rd line content		
	X4: 4th line content		

PWR-PAGE	ON: Display of Power On/Down page is ON; OFF: Display of Power On/Down page is OFF	The last 8 power on/off time will be recorded in flow meter.	OFF
REPORT	ON: Display of hourly report, shift report, daily report, and monthly report pages are ON; OFF: the above pages are OFF	The instrument is capable of compiling hourly report, shift report, daily report, and monthly report. All reports can be inquired by turning on the "REPORT"	OFF
PASSWORD	To set supplier password and customer password		
CLEAR	Yes: to clear all reports; No: not to clear all reports;	Press " ", and a window for choosing to or not to clear reports will pop up. Use " " and " " to move the cursor on proper option, and press " " for confirmation.	

9) "SHF" parameters

Name	Range	Description	Default Value
SHIFTS	1 ~ 3	Number of shifts counted in one day, reports of 3 shifts may be made at maximum for one day.	3
SHF1-ST	00:00 ~ 23:30	Start time of shift 1 (H:M), which may be H:00 or H:30	00:00
SHF1-END	00:00 ~ 23:30	End time of shift 1 (H:M), which may be H:00 or H:30	08:00
SHF2-ST	00:00 ~ 23:30	Start time of shift 2 (H:M), which may be H:00 or H:30	08:00
SHF2-END	00:00 ~ 23:30	End time of shift 2 (H:M), which may be H:00 or H:30	16:00
SHF3-ST	00:00 ~ 23:30	Start time of shift 3 (H:M), which may be H:00 or H:30	16:00
SHF3-END	00:00 ~ 23:30	End time of shift 3 (H:M), which may be H:00 or H:30	00:00

10) "PAY" parameters

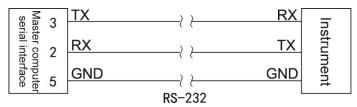
Name	Range	Description	Default
		·	Value
		Time-division charge, which can be divided	
CHRG-DIV	ON/OFF	to peak period, valley period, and normal	ON
		period.	
PEAK-ST	00:00 ~ 23:30	Start time of peak period	00:00
PEAK-END	00:00 ~ 23:30	End time of peak period	00:00
VALL-ST	00:00 ~ 23:30	Start time of valley period	00:00
VALL-END	00:00 ~ 23:30	End time of valley period	00:00
PEAK-FEE	0 – 999999	Flow unit price in peak period (RMB)	0
VALL-FEE	0 – 999999	Flow unit price in valley period (RMB)	0
NORM-FEE	0 – 999999	Flow unit price in normal period (RMB)	0
REM-CTRL	ON/OFF	Remain quantitative control, if activated, the	OFF
NEWI-CTRL	ON/OFF	4 th alarm contact will be used. The 4th	Orr

		contact will be ON when there is no remain	
		quantitative, or it is OFF.	
		The flow purchased by user (RMB Yuan)	
OLIABOE	-99999 ~	If it's a positive value, the "BALANCE" will	0
CHARGE	999999	increase; if it's a negative value, the	0
		"BALANCE" will decrease.	
BALANCE	0 ~ 9999999	The balance of flow charge (RMB Yuan)	0

11) "CON" parameters

Name	Range	Description	Default	
		7. 40. 1	Value	
CONTROL	ON/OFF	The 4th alarm contact will be used when	OFF	
		CONTROL is ON.		
		"MAN": Before triggered, the 4 th alarm	<u> </u>	
		contact remain its status. When triggered,		
TRIGGER	MAN/AUTO	alarm contact's status depends on	MAN	
		GOT-OUT.		
		"AUTO": The 4 th Alarm contact's status		
		depends on GOT-OUT.		
	OFF/ON	" OFF ": When this accumulation got		
		CTRL-VAL, the 4 th alarm contact will be	ON	
		OFF, otherwise it is ON.		
GOT-OUT		" ON ": When this accumulation got		
		CTRL-VAL, the 4 th alarm contact will be ON,		
		otherwise it is OFF.		
		ON: When this accumulation got CTRL-VAL,		
		this accumulation will be cleared		
AUTO-CLR	ON/OFF	automatically.	OFF	
		AUTO-CLR works only if TRIGGER is		
		AUTO.		
CTRL-VAL	0 999999	Control Value	100	
A D) (A N O E		Actually control will work if (this	•	
ADVANCE	0 999999	accumulation >= CTRL-VAL – ADVANCE).	0	

VIII. Communication Setting


The instrument is capable of communication with master computer which may complete parameters setting, data collection, and monitoring of slave computer. Combined with industrial computer software, dynamic display, instrument data setting, graph generation, data storage, and printing can be realized in Chinese Windows system. Real-time data and curves collection as well as historical data and curves recording can also be achieved with our master computer management software, where historical data and curves can be exported to be Excel files for processing.

Communication: RS-485/RS-232 serial interface communication, baud rate between

1200 and 9600bps for choice;

Data format: 1 start bit, 8 data bits, 1 stop bit (see details in CD) Wiring method:

IX. Calculation

- 1. Mass flow expression
 - 1.1 Mass flow expression for standard throttling device

Where: q_m: mass flow (Kg/h)

C: Discharge coefficient (dimensionless)

B: diameter ratio (dimensionless)

ε: expansion coefficient (dimensionless)

d: Throttling piece diameter (m)

△P: differential pressure (Pa)

ρ: medium density in operating condition (Kg/m³)

In formula (1) above, β will be calculated below:

$$\beta = \frac{d}{D} \qquad \cdots (2)$$

D: The pipe diameter (m)

In formula (2) above, d and D will be calculated below:

$$d = d_{20} [1 + \lambda_d (t - 20)] \qquad ... (3)$$

$$D = D_{20} [1 + \lambda_D (t - 20)] \quad \dots (4)$$

Where: d₂₀: throttling piece diameter at 20°C (m)

d₂₀: the pipe diameter at 20°C (m)

λ_d: linear expansion coefficient of orifice plate material (10⁻⁶/°C)

 λ_D : linear expansion coefficient of tube material (10⁻⁶/°C)

t: operating temperature (°C)

In formula (1) above, ϵ and C will be calculated according to GB/T2624-2006 "Measurement of Fluid Flow by means of pressure differential devices inserted in circular cross-section conduits running full". Formula (1) applies to mass flow of the following measuring devices: Flange pressure plate, Machined classical Venturi tube, Angle pressure plate, Thick iron wielding section of Venturi tube, D and D/2 pressure plate, V-cone flow meter, ISA932 nozzle, Long diameter nozzle, Venturi nozzle, Casting-type Venturi tube.

1.2 Mass flow expression for V-cone flow meter In formula (1) above, β will be calculated below:

$$\beta = \frac{\sqrt{D^2 - d^2}}{D} \qquad \dots (7)$$

1.3 Simplified mass flow expression for throttling device

$$q_m = K\sqrt{\Delta P \times \rho}$$
(8)

Where: q_m: mass flow (Kg/h)

△P: differential pressure (Pa)

ρ: medium density in operating condition (Kg/m³)

K: instrument coefficient

Formula (8) is a simplified expression derived from formula (1) where all coefficients are taken as constants, which applies to ther flow meter of differential pressure type. As instrument coefficient K is possibly not an invariable constant, K may be divided into 8 segments for segmented calculation to higher precision.

1.4 Mass flow expression for frequency-type flow meter such as vortex

$$q_m = \frac{3.6}{K} \times \rho \times f \qquad$$

Where: q_m: mass flow (Kg/h)

K: flow coefficient of vortex flow meter (pulse/L)

ρ: medium density in operating condition (Kg/m³);

f: frequency of signal sent by vortex flow meter (Hz)

As flow coefficient K is possibly not an invariable constant, K may be divided into 8 segments for segmented calculation to higher precision.

Formula (9) applies to frequency-type flow meter such as vortex.

1.5 Mass flow expression for linear volumetric flow meter

$$q_m = \rho \times q$$
(10)

Where: q_m: mass flow (Kg/h);

q: volumetric flow measured by linear flow meter (m³/h);

ρ: medium density in operating condition (Kg/m³);

Formula (10) applies to measuring device of linear flow meter.

2. Volumetric flow expression

Volumetric flow in operating conditions:

$$q_v = \frac{q_m}{\rho}$$
(11)

Volumetric flow in standard condition:

$$q_{vN} = \frac{q_m}{\rho_N} \qquad (12)$$

Where: q_v: volumetric flow in operating condition (m³/h)

q_{vN}: volumetric flow in standard condition (Nm³/h);

q_m: mass flow (Kg/h);

ρ: medium density in operating condition (Kg/m³);

ρ_N: medium density in standard condition (Kg/m³);

Standard condition means temperature of 20°C or 0°C (subject to user's choice) and atmospheric pressure of 0.10133MPa.

3. Density compensation formula

3.1 Gas density compensation formula

Dry gas density compensation formula:

$$\rho = \rho_N \times \frac{P \times T_N \times Z_N}{P_N \times T \times Z} \quad \tag{13}$$

Density compensation formula for dry part of humid gas:

$$\rho = \rho_N \times \frac{\left(P - \phi \times P_{s \max}\right) \times T_N \times Z_N}{P_N \times T \times Z} \qquad (14)$$

Where: ρ : medium density in operating condition

 ρ_N : medium density in standard condition (Kg/m³);

P: absolute pressure in operating condition (MPa);

T : absolute temperature in operating condition (T);

 P_N : absolute pressure in standard condition (0.10133MPa);

 T_N : absolute temperature in standard condition (273.15K or 293.15K);

Z : compressibility factor in operating condition (dimensionless);

Z_N: compressibility factor in standard condition (dimensionless);

φ : relative humidity in operating condition (%);

 $P_{\rm s \, max}$: saturated steam pressure in operating condition (MPa)

Compressibility factor Z could be solved by Redlich-Kwong equation:

$$Z^{3} - Z^{2} - (B^{2} + B - A)Z - AB = 0 \qquad (15)$$

$$A = \frac{0.4274802P_{r}}{T_{r}^{2.5}} \qquad B = \frac{0.0866404P_{r}}{T_{r}}$$

$$P_{r} = \frac{P}{P_{c}} \qquad T_{r} = \frac{T}{T_{c}}$$

Where: P_c means critical pressure of gas (MPa);

 T_c means critical temperature of gas (K)

3.2 Water and steam density formula

Steam density may be solved by IAPWS-IF97 formula based on measured pressure and temperature.

Saturated steam dryness compensation formula:

$$v = xv_g + (1-x)v_f$$
(16)

Where: v: specific volume of humid saturated steam (m3/Kg);

v_g: specific volume of saturated steam (m³/Kg);

v_f: specific volume of water (m³/Kg);

x: dryness (%);

Water density may be solved in real time IAPWS-IF97 formula based on measured temperature and input atmospheric pressure.

3.3 Liquid density formula

Liquid (e.g. petroleum and diesel oil) density will be solved by formula below:

$$\rho = \rho_N \times (1 + A_1 \times (t - t_N) \times 10^{-2} + A_2 \times (t - t_N)^2 \times 10^{-6})$$
 (17)

Where: ρ : liquid density in operating condition (Kg/m³);

 ρ_N : liquid density in standard condition (Kg/m³);

 t_N : temperature in standard condition (°C);

t: temperature in operating condition (°C);

 A_1 : monomial coefficient of quadratic polynomial (dimensionless);

A2: quadratic coefficient of quadratic polynomial (dimensionless);

3.4 Heat expression

Steam heat expression:

$$Q = q_m \times h$$
(19)

Where: Q: instantaneous heat (KJ/h);

 q_m : mass flow (Kg/h);

h: enthalpy (KJ/Kg);

Steam enthalpy h will be calculated in real time by IAPWS-IF97 formula.

3.5 Heat expression for hot water

Heat expression for hot water:

$$Q = q_m \times (h_{\text{inlet temperature}} - h_{\text{outlet temperature}})$$
(20)

Where: Q means instantaneous heat (KJ/h);

 q_m means mass flow (Kg/h);

 $h_{\text{inlet temperature}}$: enthalpy of hot water at the inlet (KJ/Kg);

 $h_{\scriptscriptstyle ext{outlet temperature}}$: enthalpy of hot water at the outlet (KJ/Kg);

Hot water enthalpy *h* may be calculated in real time by IAPWS-IF97 formula.

V. Example

Example 1: measuring mass flow of superheated steam with orifice plate with corner taps

It's known that:

Tube material: #45 steel

Throttling element material: 1Cr18Ni9Ti

Tube caliber: 441.20mm

Throttling element caliber: 313.71mm Atmospheric pressure: 0.10133Mpa

Differential pressure sensor: 4~20mA differential pressure

transducer (two-wire system), measuring range: 0.00 ~ 60.00Kpa (no extraction);

Pressure sensor: 4~20mA pressure transducer (two-wire system),

measuring range: 0.00 ~ 3.00Mpa;

Temperature sensor: PT100

Validation parameters

Differential pressure sensor: 14mA

Pressure sensor: 12mA

Temperature sensor: 200Ω Parameters setting:

	Content	
Measuring device in "De	V02: orifice plate with corner	
		taps
Tube material in "Device	" configuration	C05: #45 steel
Throttling element mater	ial in "Device" configuration	C12: 1Cr18Ni9Ti
Tube caliber in "Device"	configuration	441.20mm
Throttling element calibe	er in "Device" configuration	313.71mm
Measured medium in "M	edium" configuration	F03: steam
Atmospheric pressure in	"Medium" configuration	0.10133Mpa
Differential pressure	Input channel	01
signal	Input type	4 ~ 20mA
	Input unit	Кра
	Upper/lower limit of measuring	0.00 ~ 60.00
	range	
Temperature signal	Input channel	02
	Input type	PT100
	Input unit	${\mathbb C}$
	Upper/lower limit of measuring	0.0 ~ 650.0
	range	

Pressure signal	Input channel	03
	Input type	4 ~ 20mA
	Input unit	Мра
	Upper/lower limit of measuring	0.00 ~ 3.00
	range	

Formula:

$$q_m = \frac{C}{\sqrt{1 - \beta^4}} \varepsilon \frac{\pi}{4} d^2 \sqrt{2\Delta P \times \rho} \times 3600$$

Displayed result:

DF	37. 49	KPa
TEMP	266. 7	${\mathbb C}$
PRES	1. 50	MPa
InsF	137685	Kg/h

Example 2: measuring mass flow of superheated steam by vortex street (frequency) flow meter with pressure and temperature

It's known that:

Atmospheric pressure: 0.10133Mpa

Vortex street sensor: 12V distributed power; frequency 0 ~ 2000Hz; coefficient K

=500times/L

Pressure sensor: 4~20mA pressure transducer (two-wire system) for power distribution;

measuring range: $0.00 \sim 1.00 \text{Mpa}$.

Temperature sensor: PT100

• Validation parameters

Vortex street sensor: 2000Hz

Pressure sensor: 16mA

Temperature sensor: 175.84Ω

• Parameters setting:

Item	Content
Measuring device in "Device" configuration	V12: frequency-type
	vortex street flow meter
Coefficient segment in "Device" configuration	1
Segment 1 end point in "Device" configuration	1000
Coefficient K1 in "Device" configuration	500
Measured medium in "Medium" configuration	F03: steam
Atmospheric pressure in "Medium" configuration	0.10133Mpa
Differential pressure Input channel	01

signal	Input type	4 ~ 20mA
	Input unit	Кра
	Upper/lower limit of measuring range	0 ~ 2000
Temperature signal	Input channel	02
	Input type	PT100
	Input unit	$^{\circ}$
	Upper/lower limit of measuring range	0.0 ~ 6500.0
Pressure signal	Input channel	03
	Input type	4 ~ 20mA
	Input unit	Мра
	Upper/lower limit of measuring range	0.00 ~ 1.00

• Formula:

$$q_{\scriptscriptstyle m} = \frac{3.6}{K} \times \rho \times f$$

Displayed result:

DF	2000	Hz
TEMP	200.0	${\mathbb C}$
PRES	0.75	MPa
InsF	58. 9340	Kg/h